By Topic

Estimating System State During Human Walking With a Powered Ankle-Foot Orthosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
David Yifan Li ; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, USA ; Aaron Becker ; Kenneth Alex Shorter ; Timothy Bretl
more authors

This paper presents a state estimator that reliably detects gait events during human walking with a portable powered ankle-foot orthosis (AFO), based only on measurements of the ankle angle and of contact forces at the toe and heel. Effective control of the AFO critically depends on detecting these gait events. A common approach detects gait events simply by checking if each measurement exceeds a given threshold. Our approach uses cross correlation between a window of past measurements and a learned model to estimate the configuration of the human walker, and detects gait events based on this estimate. We tested our approach in experiments with five healthy subjects and with one subject that had neuromuscular impairment. Using motion capture data for reference, we compared our approach to one based on thresholding and to another common one based on k-nearest neighbors. The results showed that our approach reduced the RMS error by up to 40% for the impaired subject and up to 49% for the healthy subjects. Moreover, our approach was robust to perturbations due to changes in walking speed and to control actuation.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:16 ,  Issue: 5 )