By Topic

Short-Term Load Forecasting Based on a Semi-Parametric Additive Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shu Fan ; Bus. & Econ. Forecasting Unit, Monash Univ., Clayton, VIC, Australia ; Hyndman, R.J.

Short-term load forecasting is an essential instrument in power system planning, operation, and control. Many operating decisions are based on load forecasts, such as dispatch scheduling of generating capacity, reliability analysis, and maintenance planning for the generators. Overestimation of electricity demand will cause a conservative operation, which leads to the start-up of too many units or excessive energy purchase, thereby supplying an unnecessary level of reserve. On the other hand, underestimation may result in a risky operation, with insufficient preparation of spinning reserve, causing the system to operate in a vulnerable region to the disturbance. In this paper, semi-parametric additive models are proposed to estimate the relationships between demand and the driver variables. Specifically, the inputs for these models are calendar variables, lagged actual demand observations, and historical and forecast temperature traces for one or more sites in the target power system. In addition to point forecasts, prediction intervals are also estimated using a modified bootstrap method suitable for the complex seasonality seen in electricity demand data. The proposed methodology has been used to forecast the half-hourly electricity demand for up to seven days ahead for power systems in the Australian National Electricity Market. The performance of the methodology is validated via out-of-sample experiments with real data from the power system, as well as through on-site implementation by the system operator.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 1 )