By Topic

Keynote 5: Exploiting social metrics in content distribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ioannis Stavrakakis ; Dept. of Informatics & Telecommunications, National Kapodistrian University of Athens, Greece

Summary form only given. Social metrics have recently been considered to capture the degree of similarity in interests of the nodes as well as their “standing” within a community or network. In this talk some recent works-examples are briefly presented showing the potential benefits from incorporating social metrics in content replication, forwarding and placement. More specifically, a framework for assessing interest similarity is presented and applied to illustrate how similarity affects the effectiveness of content replication and forwarding. In addition, the widely adopted Betweenness Centrality metric is revisited and issues associated with its computation and appropriateness for content forwarding are discussed. Then, modifications and easily computable variants are introduced and their effectiveness is illustrated.

Published in:

Computers and Communications (ISCC), 2011 IEEE Symposium on

Date of Conference:

June 28 2011-July 1 2011