By Topic

FPGA-based real-time moving object detection for walking robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Laika, A. ; Inst. for Integrated Syst., Tech. Univ. Munchen, München, Germany ; Paul, J. ; Claus, C. ; Stechele, W.
more authors

In a rescue operation walking robots offer a great deal of flexibility in traversing uneven terrain in an uncontrolled environment. For such a rescue robot each motion is a potential vital sign but the existing techniques for motion detection have severe limitations in dealing with strong levels of ego-motion on walking robots. This paper proposes an optical flow based method for the detection of moving objects using a single camera mounted on a hexapod robot for an application in a rescue scenario. The proposed algorithm estimates and compensates ego-motion to allow for object detection while the robot is moving. Our algorithm can deal with strong rotation and translation in 3D, using a first-order-flow motion model, with four degrees of freedom. Two alternative object detection methods using a 2D-histogram based vector clustering and motion compensated frame differencing respectively are examined for the detection of slow and fast moving objects. In addition to a software implementation, the system was implemented on an FPGA, enabling processing in real-time at 31 fps.

Published in:

Safety Security and Rescue Robotics (SSRR), 2010 IEEE International Workshop on

Date of Conference:

26-30 July 2010