By Topic

An Accelerator-Based Wireless Sensor Network Processor in 130 nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hempstead, M. ; Dept. of Electr. & Comput. Eng., Drexel Univ., Philadelphia, PA, USA ; Brooks, D. ; Gu-Yeon Wei

Networks of ultra-low-power nodes capable of sensing, computation, and wireless communication have applications in medicine, science, industrial automation, and security. Reducing power consumption requires the development of system-on-chip implementations that must provide both energy efficiency and adequate performance to meet the demands of the long deployment lifetimes and bursts of computation that characterize wireless sensor network (WSN) applications. Therefore, this work argues that designers should evaluate the design in terms of average power for an entire workload, including active and idle periods, not just the metric of energy-per-instruction.

Published in:

Emerging and Selected Topics in Circuits and Systems, IEEE Journal on  (Volume:1 ,  Issue: 2 )