By Topic

Towards the development of gyroscopically controlled micro air vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chris E. Thorne ; Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, USA ; Mark Yim

Micro air vehicles have emerged as a popular option for diverse robotic and teleoperated applications because of their inherent stealth, portability, and disposability. In this work, we adopt a system-level perspective for the development of a rotary-wing micro air vehicle and propose a new design that utilizes gyroscopic dynamics for attitude control. Unlike traditional vehicles where attitude control moments are generated by aerodynamic control surfaces, the proposed vehicle will leverage the existing angular momentum of its rotating components to generate gyroscopic moments for controlling attitude. The capacity to rapidly generate large gyroscopic control moments, coupled with the precision gained from eliminating the need for complex and restrictive aerodynamic models, improves both agility and adaptability. We present the design and analysis of a new flying machine including the dynamic model with simplified aerodynamics and a control scheme based on a model linearized around hover. Simulations show the responsiveness and stabilization of a simple linear controller for hover.

Published in:

Robotics and Automation (ICRA), 2011 IEEE International Conference on

Date of Conference:

9-13 May 2011