Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Credibilist occupancy grids for vehicle perception in dynamic environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moras, J. ; Heudiasyc, Univ. de Technol. de Compiegne, Compiegne, France ; Cherfaoui, V. ; Bonnifait, P.

In urban environments, moving obstacles detection and free space determination are key issues for driving assistance systems and autonomous vehicles. When using lidar sensors scanning in front of the vehicle, uncertainty arises from ignorance and errors. Ignorance is due to the perception of new areas and errors come from imprecise pose estimation and noisy measurements. Complexity is also increased when the lidar provides multi-echo and multi-layer information. This paper presents an occupancy grid framework that has been designed to manage these different sources of uncertainty. A way to address this problem is to use grids projected onto the road surface in global and local frames. The global one generates the mapping and the local one is used to deal with moving objects. A credibilist approach is used to model the sensor information and to do a global fusion with the world-fixed map. Outdoor experimental results carried out with a precise positioning system show that such a perception strategy increases significantly the performance compared to a standard approach.

Published in:

Robotics and Automation (ICRA), 2011 IEEE International Conference on

Date of Conference:

9-13 May 2011