Cart (Loading....) | Create Account
Close category search window
 

A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Galar, M. ; Dept. of Autom. y Comput., Univ. Publica de Navarra, Pamplona, Spain ; Fernández, A. ; Barrenechea, E. ; Bustince, H.
more authors

Classifier learning with data-sets that suffer from imbalanced class distributions is a challenging problem in data mining community. This issue occurs when the number of examples that represent one class is much lower than the ones of the other classes. Its presence in many real-world applications has brought along a growth of attention from researchers. In machine learning, the ensemble of classifiers are known to increase the accuracy of single classifiers by combining several of them, but neither of these learning techniques alone solve the class imbalance problem, to deal with this issue the ensemble learning algorithms have to be designed specifically. In this paper, our aim is to review the state of the art on ensemble techniques in the framework of imbalanced data-sets, with focus on two-class problems. We propose a taxonomy for ensemble-based methods to address the class imbalance where each proposal can be categorized depending on the inner ensemble methodology in which it is based. In addition, we develop a thorough empirical comparison by the consideration of the most significant published approaches, within the families of the taxonomy proposed, to show whether any of them makes a difference. This comparison has shown the good behavior of the simplest approaches which combine random undersampling techniques with bagging or boosting ensembles. In addition, the positive synergy between sampling techniques and bagging has stood out. Furthermore, our results show empirically that ensemble-based algorithms are worthwhile since they outperform the mere use of preprocessing techniques before learning the classifier, therefore justifying the increase of complexity by means of a significant enhancement of the results.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:42 ,  Issue: 4 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.