Cart (Loading....) | Create Account
Close category search window
 

Active exploration for robot parameter selection in episodic reinforcement learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kroemer, O. ; Max Planck Inst., Tubingen, Germany ; Peters, J.

As the complexity of robots and other autonomous systems increases, it becomes more important that these systems can adapt and optimize their settings actively. However, such optimization is rarely trivial. Sampling from the system is often expensive in terms of time and other costs, and excessive sampling should therefore be avoided. The parameter space is also usually continuous and multi-dimensional. Given the inherent exploration-exploitation dilemma of the problem, we propose treating it as an episodic reinforcement learning problem. In this reinforcement learning framework, the policy is defined by the system's parameters and the rewards are given by the system's performance. The rewards accumulate during each episode of a task. In this paper, we present a method for efficiently sampling and optimizing in continuous multidimensional spaces. The approach is based on Gaussian process regression, which can represent continuous non-linear mappings from parameters to system performance. We employ an upper confidence bound policy, which explicitly manages the trade-off between exploration and exploitation. Unlike many other policies for this kind of problem, we do not rely on a discretization of the action space. The presented method was evaluated on a real robot. The robot had to learn grasping parameters in order to adapt its grasping execution to different objects. The proposed method was also tested on a more general gain tuning problem. The results of the experiments show that the presented method can quickly determine suitable parameters and is applicable to real online learning applications.

Published in:

Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011 IEEE Symposium on

Date of Conference:

11-15 April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.