By Topic

Optimistic planning for sparsely stochastic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Busoniu, L. ; Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands ; Munos, R. ; De Schutter, B. ; Babuska, R.

We propose an online planning algorithm for finite-action, sparsely stochastic Markov decision processes, in which the random state transitions can only end up in a small number of possible next states. The algorithm builds a planning tree by iteratively expanding states, where each expansion exploits sparsity to add all possible successor states. Each state to expand is actively chosen to improve the knowledge about action quality, and this allows the algorithm to return a good action after a strictly limited number of expansions. More specifically, the active selection method is optimistic in that it chooses the most promising states first, so the novel algorithm is called optimistic planning for sparsely stochastic systems. We note that the new algorithm can also be seen as model-predictive (receding-horizon) control. The algorithm obtains promising numerical results, including the successful online control of a simulated HIV infection with stochastic drug effectiveness.

Published in:

Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011 IEEE Symposium on

Date of Conference:

11-15 April 2011