By Topic

FES-Induced Torque Prediction With Evoked EMG Sensing for Muscle Fatigue Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhang, Qin ; LIRMM, INRIA Sophia-Antipolis, Montpellier, France ; Hayashibe, M. ; Fraisse, P. ; Guiraud, D.

This paper investigates a torque estimation method for muscle fatigue tracking, using stimulus evoked electromyography (eEMG) in the context of a functional electrical stimulation (FES) rehabilitation system. Although FES is able to effectively restore motor function in spinal cord injured (SCI) individuals, its application is inevitably restricted by muscle fatigue. In addition, the sensory feedback indicating fatigue is missing in such patients. Therefore, torque estimation is essential to provide feedback or feedforward signal for adaptive FES control. In this paper, a fatigue-inducing protocol is conducted on five SCI subjects via transcutaneous electrodes under isometric condition, and eEMG signals are collected by surface electrodes. A myoelectrical mechanical muscle model based on the Hammerstein structure with eEMG as model input is employed to capture muscle contraction dynamics. It is demonstrated that the correlation between eEMG and torque is time varying during muscle fatigue. Compared to conventional fixed-parameter models, the adapted-parameter model shows better torque prediction performance in fatiguing muscles. It motivates us to use a Kalman filter with forgetting factor for estimating the time-varying parameters and for tracking muscle fatigue. The assessment with experimental data reveals that the identified eEMG-to-torque model properly predicts fatiguing muscle behavior. Furthermore, the performance of the time-varying parameter estimation is efficient, suggesting that real-time tracking is feasible with a Kalman filter and driven by eEMG sensing in the application of FES.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:16 ,  Issue: 5 )