Cart (Loading....) | Create Account
Close category search window
 

High-Performance Energy-Efficient Multicore Embedded Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Munir, A. ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Ranka, S. ; Gordon-Ross, A.

With Moore's law supplying billions of transistors on-chip, embedded systems are undergoing a transition from single-core to multicore to exploit this high-transistor density for high performance. Embedded systems differ from traditional high-performance supercomputers in that power is a first-order constraint for embedded systems; whereas, performance is the major benchmark for supercomputers. The increase in on-chip transistor density exacerbates power/thermal issues in embedded systems, which necessitates novel hardware/software power/thermal management techniques to meet the ever-increasing high-performance embedded computing demands in an energy-efficient manner. This paper outlines typical requirements of embedded applications and discusses state-of-the-art hardware/software high-performance energy-efficient embedded computing (HPEEC) techniques that help meeting these requirements. We also discuss modern multicore processors that leverage these HPEEC techniques to deliver high performance per watt. Finally, we present design challenges and future research directions for HPEEC system development.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 4 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.