By Topic

Efficient Master/Worker Parallel Discrete Event Simulation on Metacomputing Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Park, A.J. ; Comput. Sci. & Eng. Div., Oak Ridge Nat. Lab., Oak Ridge, TN, USA ; Fujimoto, R.M.

The master/worker (MW) paradigm can be used as an approach to parallel discrete event simulation (PDES) on metacomputing systems. MW PDES applications incur overheads not found in conventional PDES executions executing on tightly coupled machines. We introduce four optimization techniques in MW PDES systems on public resource and desktop grid infrastructures. Work unit caching, pipelined state updates, expedited message delivery, and adaptive work unit scheduling mechanisms in the context of MW PDES are described. These optimizations provide significant performance benefits when used in tandem. We present results showing that an optimized MW PDES system using these techniques can exhibit performance comparable to a traditional PDES system for queueing network and particle physics simulation applications while providing execution capability across metacomputing systems.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 5 )