Cart (Loading....) | Create Account
Close category search window
 

Improved Capacity Scaling in Wireless Networks With Infrastructure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Won-Yong Shin ; Dept. of EE, KAIST, Daejeon, South Korea ; Sang-Woon Jeon ; Devroye, N. ; Vu, M.H.
more authors

This paper analyzes the impact and benefits of infrastructure support in improving the throughput scaling in networks of n randomly located wireless nodes. The infrastructure uses multiantenna base stations (BSs), in which the number of BSs and the number of antennas at each BS can scale at arbitrary rates relative to n. Under the model, capacity scaling laws are analyzed for both dense and extended networks. Two BS-based routing schemes are first introduced in this study: an infrastructure-supported single-hop (ISH) routing protocol with multiple-access uplink and broadcast downlink and an infrastructure-supported multihop (IMH) routing protocol. Then, their achievable throughput scalings are analyzed. These schemes are compared against two conventional schemes without BSs: the multihop (MH) transmission and hierarchical cooperation (HC) schemes. It is shown that a linear throughput scaling is achieved in dense networks, as in the case without help of BSs. In contrast, the proposed BS-based routing schemes can, under realistic network conditions, improve the throughput scaling significantly in extended networks. The gain comes from the following advantages of these BS-based protocols. First, more nodes can transmit simultaneously in the proposed scheme than in the MH scheme if the number of BSs and the number of antennas are large enough. Second, by improving the long-distance signal-to-noise ratio (SNR), the received signal power can be larger than that of the HC, enabling a better throughput scaling under extended networks. Furthermore, by deriving the corresponding information-theoretic cut-set upper bounds, it is shown under extended networks that a combination of four schemes IMH, ISH, MH, and HC is order-optimal in all operating regimes.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 8 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.