By Topic

Rumors in a Network: Who's the Culprit?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shah, D. ; Dept. of EECS, Massachusetts Inst. of Technol., Cambridge, MA, USA ; Zaman, T.

We provide a systematic study of the problem of finding the source of a rumor in a network. We model rumor spreading in a network with the popular susceptible-infected (SI) model and then construct an estimator for the rumor source. This estimator is based upon a novel topological quantity which we term rumor centrality. We establish that this is a maximum likelihood (ML) estimator for a class of graphs. We find the following surprising threshold phenomenon: on trees which grow faster than a line, the estimator always has nontrivial detection probability, whereas on trees that grow like a line, the detection probability will go to 0 as the network grows. Simulations performed on synthetic networks such as the popular small-world and scale-free networks, and on real networks such as an internet AS network and the U.S. electric power grid network, show that the estimator either finds the source exactly or within a few hops of the true source across different network topologies. We compare rumor centrality to another common network centrality notion known as distance centrality. We prove that on trees, the rumor center and distance center are equivalent, but on general networks, they may differ. Indeed, simulations show that rumor centrality outperforms distance centrality in finding rumor sources in networks which are not tree-like.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 8 )