By Topic

On Throughput Optimality With Delayed Network-State Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lei Ying ; Department of Electrical and Computer Engineering, Iowa State University ; Sanjay Shakkottai

The problem of routing/scheduling in a wireless network with partial/delayed network (channel and queue) state information (NSI) is studied in this paper. Two cases are considered: (i) centralized routing/scheduling, where a central controller obtains heterogeneously delayed information from each of the nodes (thus, the controller has NSI with different delays from different nodes), and makes routing/scheduling decisions; (ii) decentralized routing/scheduling, where each node makes a decision based on its current channel and queue states along with homogeneous delayed NSI from other nodes. For each of the cases (with additional flow restrictions for the decentralized routing/scheduling case), the optimal network throughput regions are characterized under the above described NSI models and it is shown that the throughput regions shrinks with the increase of delay. Further, channel and queue length based routing/scheduling algorithms that achieve the above throughput regions are proposed in this paper.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 8 )