By Topic

Optimal State-Feedback Control of Bilinear DC–DC Converters With Guaranteed Regions of Stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Olalla, C. ; Dept. of Electr., Univ. of Colorado, Boulder, CO, USA ; Queinnec, I. ; Leyva, R. ; El Aroudi, A.

This paper deals with the modeling and the robust controller synthesis for nonlinear dc-dc converters. In the first part of this paper, a model for the bilinear dynamics is presented. Such nonlinear dynamics can be included in a convex polytope such that the trajectories of the converter out of the equilibrium are assured to remain inside a guaranteed region of stability despite of the bilinear term. Such a description of the dynamic response of the converter is employed, in the second part of this paper, to propose synthesis algorithms that can guarantee, a priori, the stability and performance requirements of the design. The resulting region of stability can take into account not only the bilinear terms but also the saturation of the control input, which is a topic of major importance in high-performance dc-dc converters. The aim of this paper is to contribute with a robust control framework which allows the designers to deal with the common requirements of regulated dc-dc converters. The correctness of the results has been verified both with numerical simulations and experimental measurements from dc-dc converter prototypes.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 10 )