By Topic

Net Throughput Maximization of Per-Chunk User Scheduling for MIMO-OFDM Downlink

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohsen Eslami ; Department of Electrical and Electronics Engineering, Shiraz University of Technology , Shiraz, Iran ; Witold A. Krzymien

Per-chunk user scheduling for multiple-input-multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) downlink is considered. By grouping adjacent subcarriers into chunks, the amount of required channel state information feedback is reduced. Based on the net throughput criterion, which accounts for the reduction in sum rate due to the feedback overhead, it is shown that there exists an optimal chunk size that maximizes the net throughput. To reduce the feedback requirement even further, an opportunistic feedback scheme is proposed, and a close approximation for its net throughput is derived. The net throughput of per-chunk user scheduling with optimized chunk size is compared to various other limited-feedback MIMO-OFDM downlink strategies. The results show that increasing the total number of users in the system results in the net throughput of most existing MIMO-OFDM downlink schemes decreasing to zero for moderate-size user pools, whereas the net throughput of per-chunk user scheduling with opportunistic feedback increases with the total number of users, even when that number is very large(>; 1000).

Published in:

IEEE Transactions on Vehicular Technology  (Volume:60 ,  Issue: 9 )