Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

An Isolated High-Power Integrated Charger in Electrified-Vehicle Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Haghbin, S. ; Chalmers Univ. of Technol., Gothenburg, Sweden ; Lundmark, S. ; Alakula, M. ; Carlson, O.

For electric and hybrid vehicles that use grid power to charge the battery, traction circuit components are not normally engaged during the charging time; hence, there is a possibility of using the traction circuit components in the charger circuit to have an onboard integrated charger. An isolated high-power integrated charger based on a special electrical machine with a double set of stator windings is described. Through the reconfiguration of the motor stator windings in the charging mode, a six-terminal machine is achieved. The so-called motor/generator acts as an isolated three-phase power source after synchronization with the utility grid in the charging mode. This rotary isolated power source constitutes a three-phase boost rectifier (battery charger) with full utilization of the inverter. The motor windings are reconfigured by a relay-based switching device for the charging and traction modes. This paper presents the mathematical model of the motor/generator and explains the system's functionality for the traction and charging modes. Furthermore, the charger grid synchronization and charge control are described. Finally, the simulation results are presented for a practically designed system with a traction power of 25 kW and a possible charge power of 12.5 kW.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 9 )