By Topic

Thermodynamics of emergence: Langton's ant meets Boltzmann

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hamann, H. ; Dept. of Zoology, Univ. of Graz, Graz, Austria ; Schmickl, T. ; Crailsheim, K.

The current definitions of emergence have no effects in the context of artificial life that could convincingly be called `constructive'. They are rather descriptive labels or tests. In order to get towards recipes of generating emergence we need to know systemic characteristics that help during the design phase of artificial life systems and worlds. In this paper, we develop and discuss five hypotheses that are not meant to be irrevocable but rather thought-provoking. We introduce two modeling approaches for Langton's ant to clarify these hypotheses. Then we discuss general properties of systems, such as (ir-)reversibility, dependence on initial states, computation, discreetness, and undecidable properties of system states.

Published in:

Artificial Life (ALIFE), 2011 IEEE Symposium on

Date of Conference:

11-15 April 2011