By Topic

Multiple-Valued Logic Networks with Regular Structure Obtained from Fast Fourier Transforms on Finite Groups

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stankovic, R.S. ; Fac. of Electron., Dept. of Comput. Sci., Univ. of Nis, Nis, Serbia ; Astola, J. ; Moraga, Claudio

In this paper, we discuss the Fast Fourier transform (FFT) on finite groups as a useful method in synthesis for regularity. FFT is the algorithm for efficient calculation of the Discrete Fourier transform (DFT) and has been extended to computation of various Fourier-like transforms. The algorithm has a very regular structure that can be easily mapped to technology by replacing nodes in the corresponding flow-graphs by circuit modules performing the operations in the flow-graphs. In this way, networks with highly regular structure for implementing functions from their spectra are derived. Fourier transforms on non-Abelian groups offer additional advantages for reducing the required hardware due to matrix-valued spectral coefficients and the way how such coefficients are used in reconstructing the functions. Methods for optimization of spectral representations of functions on finite groups may be applied to improve networks with regular structure.

Published in:

Multiple-Valued Logic (ISMVL), 2011 41st IEEE International Symposium on

Date of Conference:

23-25 May 2011