By Topic

ASM: Adaptive Voice Stream Multicast over Low-Power Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liqun Li ; Inst. of Software, Grad. Univ. of Chinese Acad. of Sci., Beijing, China ; Guoliang Xing ; Qi Han ; Limin Sun

Low-power Wireless Networks (LWNs) have become increasingly available for mission-critical applications such as security surveillance and disaster response. In particular, emerging low-power wireless audio platforms provide an economical solution for ad hoc voice communication in emergency scenarios. In this paper, we develop a system called Adaptive Stream Multicast (ASM) for voice communication over multihop LWNs. ASM is composed of several novel components specially designed to deliver robust voice quality for multiple sinks in dynamic environments: 1) an empirical model to automatically evaluate the voice quality perceived at sinks based on current network condition; 2) a feedback-based Forward Error Correction (FEC) scheme where the source can adapt its coding redundancy ratio dynamically in response to the voice quality variation at sinks; 3) a Tree-based Opportunistic Routing (TOR) protocol that fully exploits the broadcast opportunities on a tree based on novel forwarder selection and coordination rules; and 4) a distributed admission control algorithm that ensures the voice quality guarantees when admitting new voice streams. ASM has been implemented on a low-power hardware platform and extensively evaluated through experiments on a test bed of 18 nodes. The experiment results show that ASM can achieve satisfactory multicast voice quality in dynamic environments while incurring low-communication overhead.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 4 )