By Topic

Effects of growth temperature on epitaxial thin films of vanadium dioxide grown by pulsed laser deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Nag ; Department of Physics and Astronomy, Vanderbilt University, Nashville TN 37235-1807 ; R. F. Haglund ; E. A. Payzant

Stoichiometric vanadium dioxide in all of its bulk, thin film and nanostructured forms exhibits an insulator-to-metal transition (IMT) accompanied by structural change, induced by various physical and chemical stimuli such as temperature, ultrashort light pulses, electric field, doping or strain. In these applications, the optical qualities of the films are of paramount importance, but are often highly variable depending on fabrication procedure. We have grown epitaxial films of vanadium dioxide on c-plane (0001) of sapphire using two different procedures involving room temperature growth followed by annealing and direct high temperature growth. Strain at the interface of the substrate and the film due to growth at different temperatures leads to significant differences in morphologies and phase transition characteristics. We present a comparative study of the morphologies and switching characteristics of the two films and conclude that contrary to conventional wisdom, the room-temperature grown films have smoother, more continuous morphologies and better switching performance. Our observation is supported by theoretical and experimental studies of epitaxial growth of semiconductors.

Published in:

CLEO: 2011 - Laser Science to Photonic Applications

Date of Conference:

1-6 May 2011