By Topic

Hybrid Artificial Bee Colony algorithm for neural network training

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Celal Ozturk ; Computer Engineering Department, Erciyes University, Kayseri, Turkiye ; Dervis Karaboga

A hybrid algorithm combining Artificial Bee Colony (ABC) algorithm with Levenberq-Marquardt (LM) algorithm is introduced to train artificial neural networks (ANN). Training an ANN is an optimization task where the goal is to find optimal weight set of the network in training process. Traditional training algorithms might get stuck in local minima and the global search techniques might catch global minima very slow. Therefore, hybrid models combining global search algorithms and conventional techniques are employed to train neural networks. In this work, ABC algorithm is hybridized with the LM algorithm to apply training neural networks.

Published in:

2011 IEEE Congress of Evolutionary Computation (CEC)

Date of Conference:

5-8 June 2011