By Topic

A novel estimation of distribution algorithm using graph-based chromosome representation and reinforcement learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xianneng Li ; Grad. Sch. of Inf., Production & Syst., Waseda Univ., Kitakyushu, Japan ; Bing Li ; Mabu, S. ; Hirasawa, K.

This paper proposed a novel EDA, where a directed graph network is used to represent its chromosome. In the proposed algorithm, a probabilistic model is constructed from the promising individuals of the current generation using reinforcement learning, and used to produce the new population. The node connection probability is studied to develop the probabilistic model, therefore pairwise interactions can be demonstrated to identify and recombine building blocks in the proposed algorithm. The proposed algorithm is applied to a problem of agent control, i.e., autonomous robot control. The experimental results show the superiority of the proposed algorithm comparing with the conventional algorithms.

Published in:

Evolutionary Computation (CEC), 2011 IEEE Congress on

Date of Conference:

5-8 June 2011