By Topic

A 1-D Capacitive Micromachined Ultrasonic Transducer Imaging Array Fabricated With a Silicon-Nitride-Based Fusion Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Logan, A.S. ; Adv. Micro/Nano-Devices Lab., Univ. of Waterloo, Waterloo, ON, Canada ; Wong, L.L.P. ; Yeow, J.T.W.

Capacitive micromachined ultrasonic transducers (CMUTs) are an alternative to the conventional method of generating ultrasound that increases bandwidths, simplifies fabrication, and facilitates the integration with necessary electronics. We report the fabrication, characterization, and initial-phased array imaging results of a 64-element array CMUT fabricated using a fusion bonding process where both the membrane and insulation layers are user deposited silicon nitride. Individual cells have a diameter of 25 μm and a membrane thickness of 500 nm. The center frequency in immersion is 6.6 MHz with a -6 dB fractional bandwidth of 123%. A 90° phased array sector scan is made of a four-wire target using a 32-element subset of the array. Pressures in excess of 2 MPa are measured. An axial resolution of 130 μm and a lateral resolution of 0.03 rad are obtained from a wire target 15 mm away from the transducer.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:16 ,  Issue: 5 )