By Topic

Itakura-Saito nonnegative matrix factorization with group sparsity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Augustin Lefèvre ; INRIA / ENS - Sierra team, France ; Francis Bach ; Cédric Févotte

We propose an unsupervised inference procedure for audio source separation. Components in nonnegative matrix factorization (NMF) are grouped automatically in audio sources via a penalized maximum likelihood approach. The penalty term we introduce favors sparsity at the group level, and is motivated by the assumption that the local amplitude of the sources are independent. Our algorithm extends multiplicative updates for NMF ; moreover we propose a test statistic to tune hyperparameters in our model, and illustrate its adequacy on synthetic data. Results on real audio tracks show that our sparsity prior allows to identify audio sources without knowledge on their spectral properties.

Published in:

2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Date of Conference:

22-27 May 2011