By Topic

An Ultra Low Power Granular Decision Making Using Cross Correlation: Minimizing Signal Segments for Template Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hassan Ghasemzadeh ; Dept. of Electr. Eng., Univeristy of Texas at Dallas, Richardson, TX, USA ; Roozbeh Jafari

Wearable sensor platforms have proved effective in a large variety of new application domains including wellness and healthcare, and are perfect examples of cyber physical systems. A major obstacle in realization of these systems is the amount of energy required for sensing, processing and communication, which can jeopardize small battery size and wear ability of the entire system. In this paper, we propose an ultra low power granular decision making architecture, also called screening classifier, that can be viewed as a tiered wake up circuitry. This processing model operates based on simple template matching. Ideally, the template matching is performed with low sensitivity but at very low power. Initial template matching removes signals that are obviously not of interest from the signal processing chain keeping the rest of processing modules inactive. If the signal is likely to be of interest, the sensitivity and the power of the template matching blocks are gradually increased and eventually the microcontroller is activated. We pose and solve an optimization problem to realize our screening classifier and improve the accuracy of classification by dividing a full template into smaller bins, called mini-templates, and activating optimal number of bins during each classification decision. Our experimental results on real data show that the power consumption of the system can be reduced by more than 70% using this intelligent processing architecture. The power consumption of the proposed granular decision making module is six orders of magnitude smaller than state-of-the-art low power microcontrollers.

Published in:

Cyber-Physical Systems (ICCPS), 2011 IEEE/ACM International Conference on

Date of Conference:

12-14 April 2011