Cart (Loading....) | Create Account
Close category search window
 

Evolutionary Prediction for Cumulative Failure Modeling: A Comparative Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Benaddy, M. ; Dept. of Math. & Comput. Sci., Ibn Zohr Univ., Agadir, Morocco ; Aljahdali, S. ; Wakrim, M.

In the past 35 years more than 100 software reliability models are proposed. Most of them are parametric models. In this paper we present a comparative study of different non-parametric models based on the neural networks and regression model learned by the real coded genetic algorithm to predict the cumulative failure in the software. Experimental results show that the training of different models by our real coded genetic algorithm have a good predictive capability across different projects.

Published in:

Information Technology: New Generations (ITNG), 2011 Eighth International Conference on

Date of Conference:

11-13 April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.