By Topic

Tapered-Vth Approach for Energy-Efficient CMOS Buffers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fabio Frustaci ; DEIS (Dipartimento di Elettronica, Informatica e Sistemistica), Università della Calabria, Rende, Italy ; Massimo Alioto ; Pasquale Corsonello

In this paper, “tapered-Vth” buffers are explored as an approach to significantly improve the energy efficiency of traditional CMOS buffers. In this approach, the transistor threshold voltage is progressively increased throughout the buffer stages, in addition to the traditional transistor tapered sizing. Analysis shows that tapered-Vth buffers are able to significantly widen the range of energy-delay trade-offs achievable in real designs, thereby showing improved design flexibility compared to single-Vth buffers. In addition, tapered-Vth buffers are shown to offer an up to 3× energy reduction under a given performance constraint. A circuit-level optimization procedure including the leakage energy contribution is adopted to explore the entire energy-delay space, in contrast to previous analyses that targeted only a specific point. To this aim, an analytical framework to express the energy-delay trade-off of CMOS buffers is presented, based on the Logical Effort methodology. Simulations in a 45-nm CMOS technology are extensively performed to validate the approach in a case study (Word Lines buffers for memory arrays) and in a number of other design cases. Extensive simulations are performed to understand the limits of the proposed approach, as well as the impact of the activity rate, the supply voltage, and process variations.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:58 ,  Issue: 11 )