By Topic

Set JPDA Filter for Multitarget Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Svensson, L. ; Dept. of Signals & Syst., Chalmers Univ. of Technol., Gothenburg, Sweden ; Svensson, D. ; Guerriero, M. ; Willett, P.

In this article, we show that when targets are closely spaced, traditional tracking algorithms can be adjusted to perform better under a performance measure that disregards identity. More specifically, we propose an adjusted version of the joint probabilistic data association (JPDA) filter, which we call set JPDA (SJPDA). Through examples and theory we motivate the new approach, and show its possibilities. To decrease the computational requirements, we further show that the SJPDA filter can be formulated as a continuous optimization problem which is fairly easy to handle. Optimal approximations are also discussed, and an algorithm, Kullback-Leibler SJPDA (KLSJPDA), which provides optimal Gaussian approximations in the Kullback-Leibler sense is derived. Finally, we evaluate the SJPDA filter on two scenarios with closely spaced targets, and compare the performance in terms of the mean optimal subpattern assignment (MOSPA) measure with the JPDA filter, and also with the Gaussian-mixture cardinalized probability hypothesis density (GM-CPHD) filter. The results show that the SJPDA filter performs substantially better than the JPDA filter, and almost as well as the more complex GM-CPHD filter.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 10 )