By Topic

Learning with memristive devices: How should we model their behavior?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Querlioz, Damien ; Inst. d''Electron. Fondamentale, Univ. Paris-Sud, Orsay, France ; Dollfus, P. ; Bichler, O. ; Gamrat, C.

This work discusses the modeling of memristive devices, for architectures where they are used as synapses. It is shown that the most common models used in this context do not always accurately reflect the actual behavior of popular devices in pulse regime. We introduce a new behavioral model, intended towards the nanoarchitecture community. It fits the conductance evolution of Univ. Michigan's synaptic memristive devices. A variation of the model fits HP labs's memristors' behavior in the same conditions. Finally, we discuss using a simple example the importance of this type of modeling for learning architectures and how it can impact the behavior of the learning.

Published in:

Nanoscale Architectures (NANOARCH), 2011 IEEE/ACM International Symposium on

Date of Conference:

8-9 June 2011