By Topic

Robust neural logic block (NLB) based on memristor crossbar array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Djaafar Chabi ; IEF, Univ. Paris-Sud 11, Orsay, France ; Weisheng Zhao ; Damien Querlioz ; Jacques-Olivier Klein

Neural networks are considered as promising candidates for implementing functions in memristor crossbar array with high tolerance to device defects and variations. Based on such arrays, Neural Logic Blocks (NLB) with learning capability can be built to replace Configurable Logic Block (CLB) in programmable logic circuits. In this article, we describe a neural learning method to implement Boolean functions in memristor NLB. By using Monte-Carlo simulation, we demonstrate its high robustness against most important device defects and variations, like static defects and memristor voltage threshold variability.

Published in:

2011 IEEE/ACM International Symposium on Nanoscale Architectures

Date of Conference:

8-9 June 2011