By Topic

Detection and classification of foreign substances in medical vials using MLP neural network and SVM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seyed Mehdi Moghadas ; Didepardaz Saba Co., Isfahan Science and Technology town, Isfahan, Iran ; Navid Rabbani

Presence of foreign substances in medical liquids can make serious problems for both patients and companies. To avoid these problems, there is a vast need of an automatic process to identify the bottles with foreign substances. In this paper, a new method is proposed to detect and classify the foreign substances in medicine bottles and vials based on machine vision. Several cameras are located in production line, to get images from medicine bottles. The captured images are thresholded to gather a collection of connected components. For each one a set of novel features are computed, the feature vectors are fed into a classifier, to distinguish the foreign substances from bubbles and also classify them in four groups, so the operator can find the source of the problem and fixes the failure in machine which causes it. An original method is also described to find out the scratches and spots on the bottle surface and distinguish them from foreign substances. The proposed method achieves detection rates over 97% and classification rates over 93%.

Published in:

2010 6th Iranian Conference on Machine Vision and Image Processing

Date of Conference:

27-28 Oct. 2010