By Topic

Steering a Ferromagnetic Particle by Optimal Magnetic Feedback Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Komaee, A. ; Dept. of Aerosp. Eng., Univ. of Maryland, College Park, MD, USA ; Shapiro, B.

A class of feedback control policies for steering a magnetic particle in a viscous fluid and actuated by a magnetic field is presented. The magnetic field which is generated by an array of electromagnets can be adequately shaped by controlling the voltages of the electromagnets. Control design relies on a dynamical model which exploits the low-pass character of the electromagnets, the opposing viscous drag on the magnetic particle, and the nonlinear (quadratic) nature of the dependence of the magnetic force on the electrical currents passing through the electromagnets. It is shown that under a set of practically achievable conditions, the nonlinearity of the model can be canceled by incorporating an inverse nonlinear map in the controller so that the closed-loop system operates like a linear system. A systematic framework for determining an optimal inverse map and investigating its properties is developed and two important cases of minimum control effort and maximum robustness are discussed. The ability to control the magnetic particle along arbitrary trajectories is verified both in simulations and in an experiment.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:20 ,  Issue: 4 )