By Topic

A real-time technique for selective molecular imaging and drug delivery in large blood vessels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Abhay V. Patil ; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908 ; Joshua J. Rychak ; Brooks Taylor ; Bryce T. Lowrey
more authors

Current clinical imaging approaches are limited to detecting atherosclerosis when it manifests as an anatomic change. An ultrasound based real-time molecular imaging technique that assists clinicians in determining the presence or extent of the disease may play a critical role in guiding therapeutic drug delivery. Resonant-stimulation Pulse inversion (RSPI) uses dual frequency excitation pulses for simultaneously guiding and selectively imaging (adherent) targeted microbubbles in real-time. In vitro and ex vivo experiments were conducted to assess the performance of the proposed technique. For constant flow (10 cm/s) and microbubble concentration, the performance of the method was evaluated in saline with varying viscosity and blood with varying hematocrit. Freshly excised swine carotids of 5 mm internal diameter were placed in saline bath. Microbubbles possessing a shell comprising Dil (fluorescent dye) embedded with a lipid base were diluted in saline and blood and flowed through the arterial lumen. An RSPI sequence was used for imaging and subsequently for destruction of the microbubbles. The histological specimens of the arterial sections were then imaged for Dil fluorescence and compared with the corresponding ultrasound images from the RSPI sequence. The performance of RSPI was better (2 dB) in viscous saline (4 cp) than in blood with varying levels of hematocrit, underlining the significance of the interaction between microbubbles and red blood cells. The ultrasound image of the longitudinal section of the excised artery at the end of the RSPI sequence corresponded well with the composite bright field-fluorescent image of the arterial cross-section confirming Dil delivery to the lower wall of the artery.

Published in:

2010 IEEE International Ultrasonics Symposium

Date of Conference:

11-14 Oct. 2010