By Topic

Compressive Sampling With Generalized Polygons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kanke Gao ; Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, USA ; Stella N. Batalama ; Dimitris A. Pados ; Bruce W. Suter

We consider the problem of compressed sensing and propose new deterministic low-storage constructions of compressive sampling matrices based on classical finite-geometry generalized polygons. For the noiseless measurements case, we develop a novel exact-recovery algorithm for strictly sparse signals that utilizes the geometry properties of generalized polygons and exhibits complexity that depends on the sparsity value only. In the presence of measurement noise, recovery of the generalized-polygon sampled signals can be carried out effectively using a belief propagation algorithm. Experimental studies included in this paper illustrate our theoretical developments.

Published in:

IEEE Transactions on Signal Processing  (Volume:59 ,  Issue: 10 )