By Topic

Reduction of Unbalanced Magnetic Pull in Synchronous Machines due to Parallel Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mattias Wallin ; Division of Electricity, Department of Engineering Sciences,, Uppsala University, , Uppsala, Sweden ; Martin Ranlof ; Urban Lundin

This paper describes an analysis of the damping of unbalanced magnetic pull (UMP) in salient pole synchronous machines due to parallel stator circuits. Measurements of the UMP and currents in the parallel circuits have been performed on a 12-pole generator with the stator displaced relative to the rotor, creating a static eccentricity, and the stator winding connected as one circuit or two parallel circuits. Experiments were done at no-load conditions. Two numerical studies of the force reduction are also presented, one using a finite-element code and one using a permeance model. A good correspondence between measured and simulated forces is obtained. Results indicate that the reduction of UMP is strongly dependent on the direction of unbalance relative to the line of separation of the stator circuits. Eddy currents induced in the rotor during operation were found to reduce the standstill UMP with more than 20%.

Published in:

IEEE Transactions on Magnetics  (Volume:47 ,  Issue: 12 )