Cart (Loading....) | Create Account
Close category search window
 

A Novel Low-Power-Implantable Epileptic Seizure-Onset Detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salam, M.T. ; Polystim Neurotechnologies Lab., Ecole Polytech. de Montreal, Montreal, QC, Canada ; Sawan, M. ; Dang Khoa Nguyen

A novel implantable low-power integrated circuit is proposed for real-time epileptic seizure detection. The presented chip is part of an epilepsy prosthesis device that triggers focal treatment to disrupt seizure progression. The proposed chip integrates a front-end preamplifier, voltage-level detectors, digital demodulators, and a high-frequency detector. The preamplifier uses a new chopper stabilizer topology that reduces instrumentation low-frequency and ripple noises by modulating the signal in the analog domain and demodulating it in the digital domain. Moreover, each voltage-level detector consists of an ultra-low-power comparator with an adjustable threshold voltage. The digitally integrated high-frequency detector is tunable to recognize the high-frequency activities for the unique detection of seizure patterns specific to each patient. The digitally controlled circuits perform accurate seizure detection. A mathematical model of the proposed seizure detection algorithm was validated in Matlab and circuits were implemented in a 2 mm2 chip using the CMOS 0.18- μm process. The proposed detector was tested by using intracerebral electroencephalography (icEEG) recordings from seven patients with drug-resistant epilepsy. The seizure signals were assessed by the proposed detector and the average seizure detection delay was 13.5 s, well before the onset of clinical manifestations. The measured total power consumption of the detector is 51 μW.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:5 ,  Issue: 6 )

Date of Publication:

Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.