By Topic

Probabilistic network fault detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hood, C.S. ; Dept. of Comput. Sci., Illinois Inst. of Technol., Chicago, IL, USA ; Chuanyi Ji

To improve network management in today's high-speed communication networks, we propose an intelligent system using adaptive learning machines. The system learns the normal behavior of the network. Deviations from the norm are detected and the information is combined in the probabilistic framework of a Bayesian network. The proposed system is thereby able to detect unknown or unseen faults. As demonstrated on real network data, this method can detect abnormal behavior before a fault actually occurs, giving the network management system (human or automated) the ability to avoid a potentially serious problem

Published in:

Global Telecommunications Conference, 1996. GLOBECOM '96. 'Communications: The Key to Global Prosperity  (Volume:3 )

Date of Conference:

18-22 Nov 1996