By Topic

Fluxless bonding for fine-pitch and low-volume solder 3-D interconnections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
K. Sakuma ; IBM Research - Tokyo, 1623-14 Shimo-tsuruma, Yamato, Kanagawa 242-8502, Japan ; K. Toriyama ; H. Noma ; K. Sueoka
more authors

Fluxless bonding can be used for fine-pitch low-solder-volume interconnections for three-dimensional large-scale integrated-circuit (3D-LSI) applications. Surface treatments with hydrogen radicals, formic acid, vacuum ultraviolet (VUV), and Ar plasma were evaluated as candidate methods for fluxless bonding. Three-μm-thick Sn solders were evaluated for intermetallic-compound (IMC) bonding of 3D integration as a target material for fluxless bonding. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), time-of-flight secondary ion mass spectrometry (TOF-SIMS), a scanning electron microscope (SEM), and a focused ion beam scanning ion microscope (FIB-SIM) were used to examine the samples. The experiments shows solder oxides and organic contaminants on the surfaces of the micro-bumps were most effectively eliminated without flux by hydrogen radical treatment among various treatments we evaluated. Bonding strength was also improved by the hydrogen radical treatment, since the shear strength was more than 50 times stronger than that of the untreated samples.

Published in:

2011 IEEE 61st Electronic Components and Technology Conference (ECTC)

Date of Conference:

May 31 2011-June 3 2011