Cart (Loading....) | Create Account
Close category search window
 

Robust Active Chatter Control in the High-Speed Milling Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Chatter is an instability phenomenon in machining processes which limits productivity and results in inferior workpiece quality, noise and rapid tool wear. The increasing demand for productivity in the manufacturing community motivates the development of an active control strategy to shape the chatter stability boundary of manufacturing processes. In this work a control methodology for the high-speed milling process is developed that alters the chatter stability boundary such that the area of chatter-free operating points is increased and a higher productivity can be attained. The methodology developed in this paper is based on a robust control approach using -synthesis. Hereto, the most important process parameters (depth of cut and spindle speed) are treated as uncertainties to guarantee the robust stability (i.e., no chatter) in an a priori specified range of these process parameters. Effectiveness of the proposed methodology is demonstrated by means of illustrative examples.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.