Cart (Loading....) | Create Account
Close category search window

Biologically Inspired Coupled Antenna Array for Direction-of-Arrival Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Akcakaya, M. ; Washington Univ. in St. Louis, St. Louis, MO, USA ; Muravchik, C.H. ; Nehorai, Arye

We propose to design a small-size antenna array having high direction-of-arrival (DOA) estimation performance, inspired by the Ormia ochracea's coupled ears. The female Ormia is able to locate male crickets' call accurately, for reproduction purposes, despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, modeled by a pair of differential equations. In this paper, we first solve the differential equations governing the Ormia ochracea's ear response, and convert the response to the prespecified radio frequencies. Using the converted response, we then implement the biologically inspired coupling as a multi-input multi-output filter on a uniform linear antenna array output. We derive the maximum likelihood estimates of source DOAs, and compute the corresponding Cramér-Rao bound on the DOA estimation error as a performance measure. We also consider a circular array configuration and compute the mean-square angular error bound on the three-dimensional localization accuracy. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum localization performance. We use Monte Carlo numerical examples to demonstrate the advantages of the coupling effect.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.