Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Estimating Soil Moisture With the Support Vector Regression Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pasolli, L. ; Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy ; Notarnicola, C. ; Bruzzone, L.

This letter presents an experimental analysis of the application of the ε-insensitive support vector regression (SVR) technique to soil moisture content estimation from remotely sensed data at field/basin scale. SVR has attractive properties, such as ease of use, good intrinsic generalization capability, and robustness to noise in the training data, which make it a valid candidate as an alternative to more traditional neural-network-based techniques usually adopted in soil moisture content estimation. Its effectiveness in this application is assessed by using field measurements and considering various combinations of the input features (i.e., different active and/or passive microwave measurements acquired using various sensor frequencies, polarizations, and acquisition geometries). The performance of the SVR method (in terms of estimation accuracy, generalization capability, computational complexity, and ease of use) is compared with that achieved using a multilayer perceptron neural network, which is considered as a benchmark in the addressed application. This analysis provides useful indications for building soil moisture estimation processors for upcoming satellites or near-real-time applications.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:8 ,  Issue: 6 )