By Topic

Energy-Efficient Coverage of Wireless Sensor Networks Using Ant Colony Optimization With Three Types of Pheromones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Joon-Woo Lee ; Department of Electrical Engineering, KAIST, Daejeon, Korea ; Byoung-Suk Choi ; Ju-Jang Lee

The Efficient-Energy Coverage (EEC) problem is an important issue when implementing Wireless Sensor Networks (WSNs) because of the need to limit energy use. In this paper, we propose a new approach to solving the EEC problem using a novel Ant Colony Optimization (ACO) algorithm. The proposed ACO algorithm has a unique characteristic that conventional ACO algorithms do not have. The proposed ACO algorithm (Three Pheromones ACO, TPACO) uses three types of pheromones to find the solution efficiently, whereas conventional ACO algorithms use only one type of pheromone. One of the three pheromones is the local pheromone, which helps an ant organize its coverage set with fewer sensors. The other two pheromones are global pheromones, one of which is used to optimize the number of required active sensors per Point of Interest (PoI), and the other is used to form a sensor set that has as many sensors as an ant has selected the number of active sensors by using the former pheromone. The TPACO algorithm has another advantage in that the two user parameters of ACO algorithms are not used. We also introduce some techniques that lead to a more realistic approach to solving the EEC problem. The first technique is to utilize the probabilistic sensor detection model. The second method is to use different kinds of sensors, i.e., heterogeneous sensors in continuous space, not a grid-based discrete space. Simulation results show the effectiveness of our algorithm over other algorithms, in terms of the whole network lifetime.

Published in:

IEEE Transactions on Industrial Informatics  (Volume:7 ,  Issue: 3 )