By Topic

Freeway traffic state estimation using extended Kalman filter for first-order traffic model in Lagrangian coordinates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yufei Yuan ; Delft University of Technology, Fac. of Civil Engineering ; J. W. C. van Lint ; S. P. Hoogendoorn ; J. L. M. Vrancken
more authors

Freeway traffic state estimation is one of the central components in real-time traffic management and information applications. Recent studies show that the classic kinematic wave model can be formulated and solved more efficiently and accurately in Lagrangian (vehicle number-time) coordinates. This paper investigates the opportunities of the Lagrangian form for state estimation. The main advantage for state estimation is that in Lagrangian coordinates, the numerical solution scheme is reduced to an upwind scheme. We propose a new model-based extended Kalman filter (EKF) state estimator where the discretized Lagrangian model is used as the model equation. This state estimator is applied to freeway traffic state estimation and validated using synthetic data. Different filter design specifications with respect to measurement aspects are considered. The achieved results are very promising for subsequent studies.

Published in:

Networking, Sensing and Control (ICNSC), 2011 IEEE International Conference on

Date of Conference:

11-13 April 2011