By Topic

Geometric Calibration of a Micro-CT System and Performance for Insect Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Zhanli Hu ; Paul Lauterbur Center for Biomed. Imaging Res., Chinese Acad. of Sci., Shenzhen, China ; Jianbao Gui ; Jing Zou ; Junyan Rong
more authors

Micro-CT with a high spatial resolution in combination with computer-based-reconstruction techniques is considered a powerful tool for morphological study of insects. The quality of CT images crucially depends on the precise knowledge of the scan geometry of the micro-CT system. In this paper, we have proposed a method to calculate the deviation of rotating axis for compensating deficiency of existing methods. A practical application of this geometric calibration method of the micro-CT system for insect imaging is presented. We have performed the computer-simulation study and experimental study with our prototype micro-CT system. The results demonstrate that the proposed technique is accurate and robust. In addition, we have evaluated the imaging characteristics of the detector in terms of modulation-transfer function (MTF). Finally, insect imaging performance and image reconstruction from data acquired with different energies are presented.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:15 ,  Issue: 4 )