By Topic

Complexity and performance in parallel programming languages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. P. VanderWiel ; Dept. of Electr. Eng., Minnesota Univ., Minneapolis, MN, USA ; D. Nathanson ; D. J. Lilja

Several parallel programming languages, libraries and environments have been developed to ease the task of writing programs for multiprocessors. Proponents of each approach often point out various language features that are designed to provide the programmer with a simple programming interface. However, virtually no data exists that quantitatively evaluates the relative ease of use of different parallel programming languages. The paper borrows techniques from the software engineering field to quantify the complexity of three predominate programming models: shared memory, message passing and High-Performance Fortran. It is concluded that traditional software complexity metrics are effective indicators of the relative complexity of parallel programming languages. The impact of complexity on run-time performance is also discussed in the context of message passing versus HPF on an IBM SP2

Published in:

High-Level Programming Models and Supportive Environments, 1997. Proceedings., Second International Workshop on

Date of Conference:

1 Apr 1997