Cart (Loading....) | Create Account
Close category search window
 

An efficient processor allocation algorithm using two-dimensional packing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Injae Hwang ; Dept. of Comput. Educ., Chung-Buk Nat. Univ., Cheongju, South Korea

The mesh is one of the most widely used interconnection networks for multiprocessor systems. We propose an approach to partition a given mesh into m submeshes which can be allocated to m tasks with grid structures. We adapt two dimensional packing to solve the submesh allocation problem. Due to the intractability of the two dimensional packing problem, finding an optimal solution is computationally infeasible. We develop an efficient heuristic packing algorithm called TP-heuristic. Allocating a submesh to each task is achieved using the results of packing. We propose two different methods called uniform scaling and non uniform scaling. Experiments were carried out to test the accuracy of solutions provided by our allocation algorithm

Published in:

Parallel Algorithms/Architecture Synthesis, 1997. Proceedings., Second Aizu International Symposium

Date of Conference:

17-21 Mar 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.