By Topic

Estimation of Glottal Closing and Opening Instants in Voiced Speech Using the YAGA Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thomas, M.R.P. ; Electr. & Electron. Eng. Dept., Imperial Coll., London, UK ; Gudnason, J. ; Naylor, P.A.

Accurate estimation of glottal closing instants (GCIs) and opening instants (GOIs) is important for speech processing applications that benefit from glottal-synchronous processing including pitch tracking, prosodic speech modification, speech dereverberation, synthesis and study of pathological voice. We propose the Yet Another GCI/GOI Algorithm (YAGA) to detect GCIs from speech signals by employing multiscale analysis, the group delay function, and N-best dynamic programming. A novel GOI detector based upon the consistency of the candidates' closed quotients relative to the estimated GCIs is also presented. Particular attention is paid to the precise definition of the glottal closed phase, which we define as the analysis interval that produces minimum deviation from an all-pole model of the speech signal with closed-phase linear prediction (LP). A reference algorithm analyzing both electroglottograph (EGG) and speech signals is described for evaluation of the proposed speech-based algorithm. In addition to the development of a GCI/GOI detector, an important outcome of this work is in demonstrating that GOIs derived from the EGG signal are not necessarily well-suited to closed-phase LP analysis. Evaluation of YAGA against the APLAWD and SAM databases show that GCI identification rates of up to 99.3% can be achieved with an accuracy of 0.3 ms and GOI detection can be achieved equally reliably with an accuracy of 0.5 ms.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 1 )